This site uses cookies to deliver our services and to ensure you get the best experience. By continuing to use this site, you consent to our use of cookies and acknowledge that you have read and understand our Privacy Policy, Cookie Policy, and Terms
We introduce a semi-supervised learning estimator which tends to the first kernel principal component as the number of labeled points vanishes. We show application of the proposed method for dimensionality reduction and develop a semi-supervised regression and classification algorithm for transductive inference.
Leonardo Angelini, Daniele Marinazzo, Mario Pellic