Sciweavers

KES
2004
Springer

Semi-supervised Learning from Unbalanced Labeled Data - An Improvement

14 years 4 months ago
Semi-supervised Learning from Unbalanced Labeled Data - An Improvement
Abstract. We present a possibly great improvement while performing semisupervised learning tasks from training data sets when only a small fraction of the data pairs is labeled. In particular, we propose a novel decision strategy based on normalized model outputs. The paper compares performances of two popular semi-supervised approaches (Consistency Method and Harmonic Gaussian Model) on the unbalanced and balanced labeled data by using normalization of the models’ outputs and without it. Experiments on text categorization problems suggest significant improvements in classification performances for models that use normalized outputs as a basis for final decision.
Te Ming Huang, Vojislav Kecman
Added 02 Jul 2010
Updated 02 Jul 2010
Type Conference
Year 2004
Where KES
Authors Te Ming Huang, Vojislav Kecman
Comments (0)