This paper provides evidence that the use of more unlabeled data in semi-supervised learning can improve the performance of Natural Language Processing (NLP) tasks, such as part-of-speech tagging, syntactic chunking, and named entity recognition. We first propose a simple yet powerful semi-supervised discriminative model appropriate for handling large scale unlabeled data. Then, we describe experiments performed on widely used test collections, namely, PTB III data, CoNLL'00 and '03 shared task data for the above three NLP tasks, respectively. We incorporate up to 1G-words (one billion tokens) of unlabeled data, which is the largest amount of unlabeled data ever used for these tasks, to investigate the performance improvement. In addition, our results are superior to the best reported results for all of the above test collections.