Sciweavers

SEMCO
2008
IEEE

SEMSOC: SEMantic, SOcial and Content-Based Clustering in Multimedia Collaborative Tagging Systems

14 years 5 months ago
SEMSOC: SEMantic, SOcial and Content-Based Clustering in Multimedia Collaborative Tagging Systems
A huge amount of data and metadata emerges from Web 2.0 applications which have transformed the Web to a mass social interaction and collaboration medium. Collaborative Tagging Systems is a typical, popular and promising Web 2.0 application and despite its adoption it faces some serious limitations that restrict their usability. These limitations (no structure on tags, tags validation, spamming and redundancy) are more evident in the case of multimedia content due to its challenging automatic annotation and retrieval requirements. In this paper, we present an approach for social data clustering which combines jointly semantic, social and content-based information. We propose an unsupervised model for efficient and scalable mining on multimedia social-related data, which leads to the extraction of rich and trustworthy semantics and the improvement of retrieval in a social tagging system. Experimental results demonstrate the efficiency of the proposed approach.
Eirini Giannakidou, Ioannis Kompatsiaris, Athena V
Added 01 Jun 2010
Updated 01 Jun 2010
Type Conference
Year 2008
Where SEMCO
Authors Eirini Giannakidou, Ioannis Kompatsiaris, Athena Vakali
Comments (0)