Sequences with almost perfect linear complexity profile are defined by H. Niederreiter[4]. C.P. Xing and K.Y. Lam[5, 6] extended this concept from the case of single sequences to the case of multi-sequences and furthermore proposed the concept of d-perfect. In this paper, based on the technique of m-continued fractions due to Dai et al, we investigate the property of d-perfect multi-sequences and obtain the sufficient and necessary condition on d-perfect property. We show that multi-sequences with d-perfect property are not always strongly d-perfect. In particular, we give one example to disprove the conjecture on d-perfect property of multi-sequences proposed by C.P. Xing in [6]. Key words: multi-sequences, linear complexity profile, d-perfect, m-continued fraction