Sciweavers

CVPR
2006
IEEE

Shape-Based Approach to Robust Image Segmentation using Kernel PCA

15 years 2 months ago
Shape-Based Approach to Robust Image Segmentation using Kernel PCA
Segmentation involves separating an object from the background. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, within the level-set framework. Following the work of Leventon et al., we revisit the use of principal component analysis (PCA) to introduce prior knowledge about shapes in a more robust manner. To this end, we utilize Kernel PCA and show that this method of learning shapes outperforms linear PCA, by allowing only shapes that are close enough to the training data. In the proposed segmentation algorithm, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description allows to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness wit...
Samuel Dambreville, Yogesh Rathi, Allen Tannenbaum
Added 12 Oct 2009
Updated 12 Oct 2009
Type Conference
Year 2006
Where CVPR
Authors Samuel Dambreville, Yogesh Rathi, Allen Tannenbaum
Comments (0)