This paper presents recent work in computational modelling of diffusing gaseous neuromodulators in biological nervous systems. It goes on to describe work in adaptive autonomous systems directly inspired by this: an exploration of the use of virtual diffusing modulators in robot nervous systems built from non-standard artificial neural networks. These virtual chemicals act over space and time modulating a variety of node and connection properties in the networks. A wide variety of rich dynamics are possible in such systems; in the work described here, evolutionary robotics techniques have been used to harness the dynamics to produce autonomous behaviour in mobile robots. Detailed comparative analyses of evolutionary searches, and search spaces, for robot controllers with and without the virtual gases are introduced. The virtual diffusing modulators are found to provide significant advantages.