In classical network flow theory the choice of paths, on which flow is sent, is only restricted by arc capacities. This, however, is not realistic in most applications. Many problems restrict, e.g., the number of paths being used to route a commodity. One idea to increase reliability of routings, e.g., in telecommunication, is to copy a demand and send the copies along disjoint paths. Such problems theoretically result in the kdisjoint flow problem (k-DFP). This problem is a variant of the classical multicommodity flow problem with the additional requirement that the number of paths to route a commodity is bounded by a given parameter. Moreover, all paths used by the same commodity have to be arc disjoint. We present a simple greedy algorithm for the optimization version of the k-DFP where the objective is to maximize the sum of routed demands. This algorithm generalizes a greedy algorithm by Kolman and Scheideler (2002) that approximates the corresponding unsplittable flow proble...