Sciweavers

ML
2002
ACM

A Simple Method for Generating Additive Clustering Models with Limited Complexity

13 years 11 months ago
A Simple Method for Generating Additive Clustering Models with Limited Complexity
Additive clustering was originally developed within cognitive psychology to enable the development of featural models of human mental representation. The representational flexibility of additive clustering, however, suggests its more general application to modeling complicated relationships between objects in non-psychological domains of interest. This paper describes, demonstrates, and evaluates a simple method for learning additive clustering models, based on the combinatorial optimization approach known as Population-Based Incremental Learning. The performance of this new method is shown to be comparable with previously developed methods over a set of `benchmark' data sets. In addition, the method developed here has the potential, by using a Bayesian analysis of model complexity that relies on an estimate of data precision, to determine the appropriate number of clusters to include in a model.
Michael D. Lee
Added 22 Dec 2010
Updated 22 Dec 2010
Type Journal
Year 2002
Where ML
Authors Michael D. Lee
Comments (0)