Millions of Internet users are using large-scale peerto-peer (P2P) networks to share content files today. Many other mission-critical applications, such as Internet telephony and Domain Name System (DNS), have also found P2P networks appealing due to their scalability and reliability properties. These P2P networks, however, could be leveraged by automatic-propagating Internet worms to quickly infect a large vulnerable population and inflict tremendous damages to information infrastructure and end systems. While much work has been done to study randomscanning worms, such as CodeRed and Slammer, we have less understanding of non-scanning worms that are potentially stealthy. In this paper, we identify three strategies a non-scanning worm could use to propagate through P2P systems. To understand their behaviors, we provide a workload-driven simulation framework to characterize these worms and identify the parameters influencing their propagations. The non-scanning nature allows P2P wor...
Guanling Chen, Robert S. Gray