This paper explores correspondence and mixture topic modeling of documents tagged from two different perspectives. There has been ongoing work in topic modeling of documents with tags (tag-topic models) where words and tags typically reflect a single perspective, namely document content. However, words in documents can also be tagged from different perspectives, for example, syntactic perspective as in part-of-speech tagging or an opinion perspective as in sentiment tagging. The models proposed in this paper are novel in: (i) the consideration of two different tag perspectives - a document level tag perspective that is relevant to the document as a whole and a word level tag perspective pertaining to each word in the document; (ii) the attribution of latent topics with word level tags and labeling latent topics with images in case of multimedia documents; and (iii) discovering the possible correspondence of the words to document level tags. The proposed correspondence tag-topic mo...
Pradipto Das, Rohini K. Srihari, Yun Fu