Quality assurance (QA) tasks, such as testing, profiling, and performance evaluation, have historically been done in-house on developer-generated workloads and regression suites. Since this approach is inadequate for many systems, tools and processes are being developed to improve software quality by increasing user participation in the QA process. A limitation of these approaches is that they focus on isolated mechanisms, not on the coordination and control policies and tools needed to make the global QA process efficient, effective, and scalable. To address these issues, we have initiated the Skoll project, which is developing and validating novel software QA processes and tools that leverage the extensive computing resources of worldwide user communities in a distributed, continuous manner to significantly and rapidly improve software quality. This paper provides several contributions to the study of distributed continuous QA. First, it illustrates the structure and functionality o...
Atif M. Memon, Adam A. Porter, Cemal Yilmaz, Adith