Sciweavers

ICRA
2009
IEEE

SLAM in large indoor environments with low-cost, noisy, and sparse sonars

14 years 5 months ago
SLAM in large indoor environments with low-cost, noisy, and sparse sonars
— Simultaneous localization and mapping (SLAM) is a well-studied problem in mobile robotics. However, the majority of the proposed techniques for SLAM rely on the use of accurate and dense measurements provided by laser rangefinders to correctly localize the robot and produce accurate and detailed maps of complex environments. Little work has been done on the use of low-cost but noisy and sparse sonar sensors for SLAM in large indoor environments involving large loops. In this paper, we present our approach to SLAM with sonar sensors by applying particle filtering and a line-segment-based map representation with an orthogonality assumption to map indoor environments much larger and more challenging than those previously considered with sonar sensors. Results from robotic experiments demonstrate that it is possible to produce good maps of large indoor environments with large loops despite the inherent limitations of sonar sensors.
Teddy N. Yap Jr., Christian R. Shelton
Added 23 May 2010
Updated 23 May 2010
Type Conference
Year 2009
Where ICRA
Authors Teddy N. Yap Jr., Christian R. Shelton
Comments (0)