There exist a number of high-performance Multi-Objective Evolutionary Algorithms (MOEAs) for solving MultiObjective Optimization (MOO) problems; two of the best are NSGA-II and -MOEA. However, they lack an archive population sorted into levels of non-domination, making them unsuitable for construction problems where some type of backtracking to earlier intermediate solutions is required. In this paper we introduce our Stored Non-Domination Level (SNDL) MOEA for solving such construction problems. SNDL-MOEA combines some of the best features of NSGA-II and -MOEA with the ability to store and recall intermediate solutions necessary for construction problems. We present results for applying SNDL-MOEA to the Tight Single Change Covering Design (TSCCD) construction problem, demonstrating its applicability. Furthermore, we show with a detailed performance comparison between SNDL-MOEA, NSGA-II, and -MOEA on two standard test series that SNDL-MOEA is capable of outperforming NSGA-II and is co...
Matt D. Johnson, Daniel R. Tauritz, Ralph W. Wilke