A three-year study collected information bearing on the question of whether studying mathematics improves programming skills. An analysis of the data revealed significant differences in the programming effectiveness of two populations of students: (1) those who studied discrete mathematics through examples focused on reasoning about software and (2) those who studied the same mathematical topics illustrated with more traditional examples. Functional programming played a central role in the study because it provides a straightforward framework for the presentation of concepts such as predicate logic and proof by induction. Such topics can be covered in depth, staying almost entirely within the context of reasoning about software. The intricate complexities in logic that mutable variables carry with them need not arise, early on, to confuse novices struggling to understand new ideas. In addition, because functional languages provide useful and compact ways to express mathematical concep...
Rex L. Page