Sciweavers

CDC
2015
IEEE

Solution of optimal power flow problems using moment relaxations augmented with objective function penalization

8 years 8 months ago
Solution of optimal power flow problems using moment relaxations augmented with objective function penalization
— The optimal power flow (OPF) problem minimizes the operating cost of an electric power system. Applications of convex relaxation techniques to the non-convex OPF problem have been of recent interest, including work using the Lasserre hierarchy of “moment” relaxations to globally solve many OPF problems. By preprocessing the network model to eliminate lowimpedance lines, this paper demonstrates the capability of the moment relaxations to globally solve large OPF problems that minimize active power losses for portions of several European power systems. Large problems with more general objective functions have thus far been computationally intractable for current formulations of the moment relaxations. To overcome this limitation, this paper proposes the combination of an objective function penalization with the moment relaxations. This combination yields feasible points with objective function values that are close to the global optimum of several large OPF problems. Compared to...
Daniel K. Molzahn, Cédric Josz, Ian A. Hisk
Added 18 Apr 2016
Updated 18 Apr 2016
Type Journal
Year 2015
Where CDC
Authors Daniel K. Molzahn, Cédric Josz, Ian A. Hiskens, Patrick Panciatici
Comments (0)