In this paper, we study the atomic multicast problem, a fundamental abstraction for building faulttolerant systems. In the atomic multicast problem, the system is divided into non-empty and disjoint groups of processes. Multicast messages may be addressed to any subset of groups, each message possibly being multicast to a different subset. Several papers previously studied this problem either in local area networks [3, 9, 20] or wide area networks [13, 21]. However, none of them considered atomic multicast when groups may crash. We present two atomic multicast algorithms that tolerate the crash of groups. The first algorithm tolerates an arbitrary number of failures, is genuine (i.e., to deliver a message m, only addressees of m are involved in the protocol), and uses the perfect failures detector P. We show that among realistic failure detectors, i.e., those that do not predict the future, P is necessary to solve genuine atomic multicast if we do not bound the number of processes tha...