Sciweavers

GECCO
2007
Springer

Solving real-valued optimisation problems using cartesian genetic programming

14 years 6 months ago
Solving real-valued optimisation problems using cartesian genetic programming
Classical Evolutionary Programming (CEP) and Fast Evolutionary Programming (FEP) have been applied to realvalued function optimisation. Both of these techniques directly evolve the real-values that are the arguments of the real-valued function. In this paper we have applied a form of genetic programming called Cartesian Genetic Programming (CGP) to a number of real-valued optimisation benchmark problems. The approach we have taken is to evolve a computer program that controls a writing-head, which moves along and interacts with a finite set of symbols that are interpreted as real numbers, instead of manipulating the real numbers directly. In other studies, CGP has already been shown to benefit from a high degree of neutrality. We hope to exploit this for real-valued function optimisation problems to avoid being trapped on local optima. We have also used an extended form of CGP called Embedded CGP (ECGP) which allows the acquisition, evolution and re-use of modules. The effectivenes...
James Alfred Walker, Julian Francis Miller
Added 07 Jun 2010
Updated 07 Jun 2010
Type Conference
Year 2007
Where GECCO
Authors James Alfred Walker, Julian Francis Miller
Comments (0)