Sciweavers

ISBI
2008
IEEE

Sparse representations for limited data tomography

15 years 1 months ago
Sparse representations for limited data tomography
In limited data tomography, with applications such as electron microscopy and medical imaging, the scanning views are within an angular range that is often both limited and sparsely sampled. In these situations, standard algorithms produce reconstructions with notorious artifacts. We show in this paper that a sparsity image representation principle, based on learning dictionaries for sparse representations of image patches, leads to significantly improved reconstructions of the unknown density from its limited angle projections. The presentation of the underlying framework is complemented with illustrative results on artificial and real data.
Hstau Y. Liao, Guillermo Sapiro
Added 20 Nov 2009
Updated 20 Nov 2009
Type Conference
Year 2008
Where ISBI
Authors Hstau Y. Liao, Guillermo Sapiro
Comments (0)