Sciweavers

CORR
2008
Springer

A Spectral Algorithm for Learning Hidden Markov Models

13 years 12 months ago
A Spectral Algorithm for Learning Hidden Markov Models
Hidden Markov Models (HMMs) are one of the most fundamental and widely used statistical tools for modeling discrete time series. In general, learning HMMs from data is computationally hard (under cryptographic assumptions), and practitioners typically resort to search heuristics which suffer from the usual local optima issues. We prove that under a natural separation condition (bounds on the smallest singular value of the HMM parameters), there is an efficient and provably correct algorithm for learning HMMs. The sample complexity of the algorithm does not explicitly depend on the number of distinct (discrete) observations-it implicitly depends on this quantity through spectral properties of the underlying HMM. This makes the algorithm particularly applicable to settings with a large number of observations, such as those in natural language processing where the space of observation is sometimes the words in a language. The algorithm is also simple: it employs only a singular value dec...
Daniel Hsu, Sham M. Kakade, Tong Zhang
Added 10 Dec 2010
Updated 10 Dec 2010
Type Journal
Year 2008
Where CORR
Authors Daniel Hsu, Sham M. Kakade, Tong Zhang
Comments (0)