The spectral approach for graph visualization computes the layout of a graph using certain eigenvectors of related matrices. Some important advantages of this approach are an ability to compute optimal layouts (according to specific requirements) and a very rapid computation time. In this paper we explore spectral visualization techniques and study their properties. We present a novel view of the spectral approach, which provides a direct link between eigenvectors and the aesthetic properties of the layout. In addition, we present a new formulation of the spectral drawing method with some aesthetic advantages. This formulation is accompanied by an aesthetically-motivated algorithm, which is much easier to understand and to implement than the standard numerical algorithms for computing eigenvectors.