This paper presents a general framework for analyzing and designing embedded systems with energy and timing requirements. A set of realistic assumptions is considered in the model in order to apply the results in practical realtime applications. For example, the processor is assumed to have as a set of discrete operating modes, each characterized by speed, power consumption. The transition delay between modes is considered. To take I/O operations into account, task computation times are modeled with a part that scales with the speed and a part having a fixed duration. Given a set of real-time tasks, the proposed method allows to compute the optimal sequence of voltage/speed changes that approximates the minimum continuous speed which guarantees the feasibility of the system. The analysis is performed both under fixed and dynamic priority assignments.
Enrico Bini, Giorgio C. Buttazzo, Giuseppe Lipari