Many interesting combinatorial objects are enumerated by the k-Catalan numbers, one possible generalization of the Catalan numbers. We will present a new combinatorial object that is enumerated by the k-Catalan numbers, staircase tilings. We give a bijection between staircase tilings and k-good paths, and between k-good paths and k-ary trees. In addition, we enumerate k-ary paths according to DD, UDU, and UU, and connect these statistics for k-ary paths to statistics for the staircase tilings. Using the given bijections, we enumerate statistics on the staircase tilings, and obtain connections with Catalan numbers for special values of k. The second part of the paper lists a sampling of other combinatorial structures that are enumerated by the k-Catalan numbers. Many of the proofs generalize from those for the Catalan structures that are being generalized, but we provide one proof that is not a straightforward generalization. We propose a web site repository for these structures, simil...
Silvia Heubach, Nelson Y. Li, Toufik Mansour