We present an approach to query expansion in answer retrieval that uses Statistical Machine Translation (SMT) techniques to bridge the lexical gap between questions and answers. SMT-based query expansion is done by i) using a full-sentence paraphraser to introduce synonyms in context of the entire query, and ii) by translating query terms into answer terms using a full-sentence SMT model trained on question-answer pairs. We evaluate these global, context-aware query expansion techniques on tfidf retrieval from 10 million question-answer pairs extracted from FAQ pages. Experimental results show that SMTbased expansion improves retrieval performance over local expansion and over retrieval without expansion.