Sciweavers

ICPR
2002
IEEE

A Statistical Modeling Approach to Content Based Video Retrieval

15 years 16 days ago
A Statistical Modeling Approach to Content Based Video Retrieval
Statistical modeling for content based retrieval is examined in the context of recent TREC Video benchmark exercise. The TREC Video exercise can be viewed as a test bed for evaluation and comparison of a variety of different algorithms on a set of high-level queries for multimedia retrieval. We report on the use of techniques adopted from statistical learning theory. Our method depend on training of models based on large data sets. Particularly, we use statistical models such the Gaussian mixture models to build computational representations for a variety of semantic concepts including rocket-launch, outdoor, greenery, sky etc. Training requires a large amount of annotated (labeled) data. Thus, we explore use of active learning for the annotation engine that minimizes the number of training samples to be labeled for satisfactory performance.
Milind R. Naphade, Sankar Basu, John R. Smith, Chi
Added 09 Nov 2009
Updated 09 Nov 2009
Type Conference
Year 2002
Where ICPR
Authors Milind R. Naphade, Sankar Basu, John R. Smith, Ching-Yung Lin, Belle L. Tseng
Comments (0)