Abstract— We show a statistical pruning approach for maximum likelihood (ML) detection of multiple-input multiple-output (MIMO) systems. We present a general pruning strategy for sphere decoder (SD), which can also be applied to any tree search algorithms. Our pruning rules are effective especially for the case when SD has high complexity. Three specific pruning rules are given and discussed. From analyzing the union bound on the symbol error probability, we show that the diversity order of the deterministic pruning is only one by fixing the pruning probability. By choosing different pruning probability distribution functions, the statistical pruning can achieve arbitrary diversity orders and SNR gains. Our statistical pruning strategy thus achieves a flexible trade-off between complexity and performance.