The development of accurate models and efficient algorithms for the analysis of multivariate categorical data are important and longstanding problems in machine learning and computational statistics. In this paper, we focus on modeling categorical data using Latent Gaussian Models (LGMs). We propose a novel stick-breaking likelihood function for categorical LGMs that exploits accurate linear and quadratic bounds on the logistic log-partition function, leading to an effective variational inference and learning framework. We thoroughly compare our approach to existing algorithms for multinomial logit/probit likelihoods on several problems, including inference in multinomial Gaussian process classification and learning in latent factor models. Our extensive comparisons demonstrate that our stick-breaking model effectively captures correlation in discrete data and is well suited for the analysis of categorical data.
Mohammad Emtiyaz Khan, Shakir Mohamed, Benjamin M.