— In this paper, we investigate the channel selection strategy for secondary users in cognitive radio networks. We claim that in order to avoid the costly channel switchings, a secondary user may desire an optimal channel which maximizes the probability of successful transmissions, rather than consistently adapting channels to the random environment. We propose a stochastic channel selection algorithm based on the learning automata techniques. This algorithm adjusts the probability of selecting each available channel and converges to the -optimal solution asymptotically.