We consider cut games where players want to cut themselves off from different parts of a network. These games arise when players want to secure themselves from areas of potential infection. For the gametheoretic version of Multiway Cut, we prove that the price of stability is 1, i.e., there exists a Nash equilibrium as good as the centralized optimum. For the game-theoretic version of Multicut, we show that there exists a 2-approximate equilibrium as good as the centralized optimum. We also give poly-time algorithms for finding exact and approximate equilibria in these games. Keywords Network Formation Games