A fundamental question in causal inference is whether it is possible to reliably infer the manipulation effects from observational data. There are a variety of senses of asymptotic reliability in the statistical literature, among which the most commonly discussed frequentist notions are pointwise consistency and uniform consistency (see, e.g. Bickel, Doksum [2001]). Uniform consistency is in general preferred to pointwise consistency because the former allows us to control the worst case error bounds with a finite sample size. In the sense of pointwise consistency, several reliable causal inference algorithms have been established under the Markov and Faithfulness assumptions [Pearl 2000, Spirtes et al. 2001]. In the sense of uniform consistency, however, reliable causal inference is impossible under the two assumptions when time order is unknown and/or latent confounders are present [Robins et al. 2000]. In this paper we present two natural generalizations of the Faithfulness assum...