— In this contribution, we propose two successive interference cancellation (SIC) schemes for a fast frequency hopping (FFH) multiple access (MA) system using M-ary frequency shift keying (MFSK) and invoking multi-user detection (MUD). One of the proposed schemes invokes clipped combining, while the other scheme employs both product combining and clipped combining. The SIC schemes are adapted from a scheme proposed by U.-C. Fiebig in 1996. The basic principle of the SIC schemes is that detection is carried out in multiple stages and during each stage, only the most reliable symbols are detected. In subsequent stages, the interference contributed by the already detected symbols may be removed. The performance of the proposed schemes is evaluated and compared to that of Fiebig’s scheme, when the FFH-MFSK system operates in a Nakagamim fading MA channel. The simulation results demonstrate that the proposed schemes attain a better bit error rate performance than Fiebig’s scheme.