Sciweavers

ICASSP
2011
IEEE

A supervised approach to movie emotion tracking

13 years 4 months ago
A supervised approach to movie emotion tracking
In this paper, we present experiments on continuous time, continuous scale affective movie content recognition (emotion tracking). A major obstacle for emotion research has been the lack of appropriately annotated databases, limiting the potential for supervised algorithms. To that end we develop and present a database of movie affect, annotated in continuous time, on a continuous valence-arousal scale. Supervised learning methods are proposed to model the continuous affective response using hidden Markov Models (independent) in each dimension. These models classify each video frame into one of seven discrete categories (in each dimension); the discrete-valued curves are then converted to continuous values via spline interpolation. A variety of audio-visual features are investigated and an optimal feature set is selected. The potential of the method is experimentally verified on twelve 30-minute movie clips with good precision at a macroscopic level.
Nikos Malandrakis, Alexandros Potamianos, Georgios
Added 21 Aug 2011
Updated 21 Aug 2011
Type Journal
Year 2011
Where ICASSP
Authors Nikos Malandrakis, Alexandros Potamianos, Georgios Evangelopoulos, Athanasia Zlatintsi
Comments (0)