Abstract. Surface reconstruction from a set of noisy point measurements has been a well studied problem for several decades. Recently, variational and discrete optimization approaches have been applied to solve it, demonstrating good robustness to outliers thanks to a global energy minimization scheme. In this work, we use a recent approach embedding several optimization algorithms into a common framework named power watershed. We derive a specific watershed algorithm for surface reconstruction which is fast, robust to markers placement, and produces smooth surfaces. Experiments also show that our proposed algorithm compares favorably in terms of speed, memory requirement and accuracy with existing algorithms.