New graph structures where node labels are members of hierarchically organized ontologies or taxonomies have become commonplace in different domains, e.g., life sciences. It is a challenging task to mine for frequent patterns in this new graph model which we call taxonomy-superimposed graphs, as there may be many patterns that are implied by the generalization/specialization hierarchy of the associated node label taxonomy. Hence, standard graph mining techniques are not directly applicable. In this paper, we present Taxogram, a taxonomy-superimposed graph mining algorithm that can efficiently discover frequent graph structures in a database of taxonomy-superimposed graphs. Taxogram has two advantages: (i) It performs a subgraph isomorphism test once per class of patterns which are structurally isomorphic, but have different labels, and (ii) it reconciles standard graph mining methods with taxonomy-based graph mining and takes advantage of well-studied methods in the literature. Taxogr...