Abstract. Text detection in urban scenes is a hard task due to the high variability of text appearance: different text fonts, changes in the point of view, or partial occlusion are just a few problems. Text detection can be specially suited for georeferencing business, navigation, tourist assistance, or to help visual impaired people. In this paper, we propose a general methodology to deal with the problem of text detection in outdoor scenes. The method is based on learning spatial information of gradient based features and Census Transform images using a cascade of classifiers. The method is applied in the context of Mobile Mapping systems, where a mobile vehicle captures urban image sequences. Moreover, a cover data set is presented and tested with the new methodology. The results show high accuracy when detecting multi-linear text regions with high variability of appearance, at same time that it preserves a low false alarm rate compared to classical approaches.