Speaker identification and verification systems have a poor performance when model training is done in one language while the testing is done in another. This situation is not unusual in multilingual environments, where people should be able to access the system in any language he or she prefers in each moment, without noticing a performance drop. In this work we study the possibility of using features derived from prosodic parameters in order to reinforce the language robustness of these systems. First the features' properties in terms of language and session variability are studied, predicting an increase in the language robustness when frame-wise intonation and energy values are combined with traditional MFCC features. The experimental results confirm that these features provide an improvement in the speaker recognition rates under language-mismatch conditions. The whole study is carried out in the Basque Country, a bilingual region in which Basque and Spanish languages co-exi...