Patent documents contain important research results. However, they are lengthy and rich in technical terminology such that it takes a lot of human efforts for analyses. Automatic tools for assisting patent engineers or decision makers in patent analysis are in great demand. This paper describes a series of text mining techniques that conforms to the analytical process used by patent analysts. These techniques include text segmentation, summary extraction, feature selection, term association, cluster generation, topic identification, and information mapping. The issues of efficiency and effectiveness are considered in the design of these techniques. Some important features of the proposed methodology include a rigorous approach to verify the usefulness of segment extracts as the document surrogates, a corpus- and dictionary-free algorithm for keyphrase extraction, an efficient co-word analysis method that can be applied to large volume of patents, and an automatic procedure to creat...