Abstract. Computational systems are often represented by means of Kripke structures, and related using simulations. We propose rewriting logic as a flexible and executable framework in which to formally specify these mathematical models, and introduce a particular and elegant way of representing simulations in it: theoroidal maps. A categorical viewpoint is very natural in the study of these structures and we show how to organize Kripke structures in categories that afterwards are lifted to the rewriting logic’s level. We illustrate the use of theoroidal maps applications: predicate abstraction and the study of fairness constraints.