Sciweavers

PAMI
2008

Tied Factor Analysis for Face Recognition across Large Pose Differences

13 years 11 months ago
Tied Factor Analysis for Face Recognition across Large Pose Differences
Face recognition algorithms perform very unreliably when the pose of the probe face is different from the gallery face: typical feature vectors vary more with pose than with identity. We propose a generative model that creates a one-to-many mapping from an idealized "identity" space to the observed data space. In identity space, the representation for each individual does not vary with pose. We model the measured feature vector as being generated by a pose-contingent linear transformation of the identity variable in the presence of Gaussian noise. We term this model "tied" factor analysis. The choice of linear transformation (factors) depends on the pose, but the loadings are constant (tied) for a given individual. We use the EM algorithm to estimate the linear transformations and the noise parameters from training data. We propose a probabilistic distance metric that allows a full posterior over possible matches to be established. We introduce a novel feature extra...
Simon J. D. Prince, James H. Elder, Jonathan Warre
Added 14 Dec 2010
Updated 14 Dec 2010
Type Journal
Year 2008
Where PAMI
Authors Simon J. D. Prince, James H. Elder, Jonathan Warrell, Fatima M. Felisberti
Comments (0)