We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in [2]), of which max, min, and indicator functions are important examples; our discussions are couched in terms of the max function. We view the problem as one of message passing distributed computation over a geometric random graph. The network is assumed to be synchronous; the sensors synchronously measure values, and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (i) the communication topology assumed, and (ii) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the...