Realtime web search refers to the retrieval of very fresh content which is in high demand. An effective portal web search engine must support a variety of search needs, including realtime web search. However, supporting realtime web search introduces two challenges not encountered in non-realtime web search: quickly crawling relevant content and ranking documents with impoverished link and click information. In this paper, we advocate the use of realtime micro-blogging data for addressing both of these problems. We propose a method to use the micro-blogging data stream to detect fresh URLs. We also use micro-blogging data to compute novel and effective features for ranking fresh URLs. We demonstrate these methods improve effective of the portal web search engine for realtime web search. Categories and Subject Descriptors H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval General Terms Algorithms, Experimentation Keywords Twitter, recency ranking, recency model...