Background: The extraction of biological knowledge from genome-scale data sets requires its analysis in the context of additional biological information. The importance of integrating experimental data sets with molecular interaction networks has been recognized and applied to the study of model organisms, but its systematic application to the study of human disease has lagged behind due to the lack of tools for performing such integration. Results: We have developed techniques and software tools for simplifying and streamlining the process of integration of diverse experimental data types in molecular networks, as well as for the analysis of these networks. We applied these techniques to extract, from genomic expression data from Hepatitis C virus-infected liver tissue, potentially useful hypotheses related to the onset of this disease. Our integration of the expression data with large-scale molecular interaction networks and subsequent analyses identified molecular pathways that app...
David J. Reiss, Iliana Avila-Campillo, Vesteinn Th