To date, topology control in wireless ad hoc and sensor networks--the study of how to compute from the given communication network a subgraph with certain beneficial properties--has been considered as a static problem only; the time required to actually schedule the links of a computed topology without message collision was generally ignored. In this paper we analyze topology control in the context of the physical Signal-to-Interference-plus-Noise-Ratio (SINR) model, focusing on the question of how and how fast the links of a resulting topology can actually be realized over time. For this purpose, we define and study a generalized version of the SINR model and obtain theoretical upper bounds on the scheduling complexity of arbitrary topologies in wireless networks. Specifically, we prove that even in worst-case networks, if the signals are transmitted with correctly assigned transmission power levels, the number of time slots required to successfully schedule all links of an arbitrary...