Abstract. This article introduces structural aspects in an ontology of approximate reason. The basic assumption in this ontology is that approximate reason is a capability of an agent. Agents are designed to classify information granules derived from sensors that respond to stimuli in the environment of an agent or received from other agents. Classification of information granules is carried out in the context of parameterized approximation spaces and a calculus of granules. Judgment in agents is a faculty of thinking about (classifying) the particular relative to decision rules derived from data. Judgment in agents is reflective, but not in the classical philosophical sense (e.g., the notion of judgment in Kant). In an agent, a reflective judgment itself is an assertion that a particular decision rule derived from data is applicable to an object (input). That is, a reflective judgment by an agent is an assertion that a particular vector of attribute (sensor) values matches to some deg...
James F. Peters, Andrzej Skowron, Jaroslaw Stepani