In this contribution we present an algorithm for tracking non-rigid, moving objects in a sequence of colored images, which were recorded by a non-stationary camera. The application background is vision-based driving assistance in the inner city. In an initial step, object parts are determined by a divisive clustering algorithm, which is applied to all pixels in the first image of the sequence. The feature space is defined by the color and position of a pixel. For each new image the clusters of the previous image are adapted iteratively by a parallel k-means clustering algorithm. Instead of tracking single points, edges, or areas over a sequence of images, only the centroids of the clusters are tracked. The proposed method remarkably simplifies the correspondence problem and also ensures a robust tracking behavior.
Bernd Heisele, Ulrich Kressel, W. Ritter