Sciweavers

AIED
2005
Springer

Tradeoff analysis between knowledge assessment approaches

14 years 5 months ago
Tradeoff analysis between knowledge assessment approaches
Abstract: The problem of modeling and assessing an individual’s ability level is central to learning environments. Numerous approaches exists to this end. Computer Adaptive Testing (CAT) techniques, such as IRT and Bayesian posterior updating, are amongst the early approaches. Bayesian networks and graphs models are more recent approaches to this problem. These frameworks differ on their expressiveness and on their ability to automate model building and calibration with empirical data. We discuss the implication of expressiveness and data-driven properties of different frameworks, and analyze how it affects the applicability and accuracy of the knowledge assessment process. We conjecture that although expressive models such as Bayesian networks provide better cognitive diagnostic ability, their applicability, reliability, and accuracy is strongly affected by the knowledge engineering effort they require. We conclude with a comparative analysis of data driven approaches and provide em...
Michel Desmarais, Shunkai Fu, Xiaoming Pu
Added 26 Jun 2010
Updated 26 Jun 2010
Type Conference
Year 2005
Where AIED
Authors Michel Desmarais, Shunkai Fu, Xiaoming Pu
Comments (0)