Sciweavers

NOLISP
2007
Springer

Trajectory Mixture Density Networks with Multiple Mixtures for Acoustic-Articulatory Inversion

14 years 5 months ago
Trajectory Mixture Density Networks with Multiple Mixtures for Acoustic-Articulatory Inversion
We have previously proposed a trajectory model which is based on a mixture density network (MDN) trained with target variables augmented with dynamic features together with an algorithm for estimating maximum likelihood trajectories which respects the constraints between those features. In this paper, we have extended that model to allow diagonal covariance matrices and multiple mixture components in the trajectory MDN output probability density functions. We have evaluated this extended model on an inversion mapping task and found the trajectory model works well, outperforming smoothing of equivalent trajectories using low-pass filtering. Increasing the number of mixture components in the TMDN improves results further.
Korin Richmond
Added 08 Jun 2010
Updated 08 Jun 2010
Type Conference
Year 2007
Where NOLISP
Authors Korin Richmond
Comments (0)