Mining frequent patterns in transaction databases has been studied extensively in data mining research. However, most of the existing frequent pattern mining algorithms do not consider the time stamps associated with the transactions. In this paper, we extend the existing frequent pattern mining framework to take into account the time stamp of each transaction and discover patterns whose frequency dramatically changes over time. We define a new type of patterns, called transitional patterns, to capture the dynamic behavior of frequent patterns in a transaction database. Transitional patterns include both positive and negative transitional patterns. Their frequencies increase/decrease dramatically at some time points of a transaction database. We introduce the concept of significant milestones for a transitional pattern, which are time points at which the frequency of the pattern changes most significantly. Moreover, we develop an algorithm to mine from a transaction database the set o...