Sciweavers

CORR
2008
Springer

Tree-width of hypergraphs and surface duality

14 years 15 days ago
Tree-width of hypergraphs and surface duality
In Graph Minors III, Robertson and Seymour write:"It seems that the tree-width of a planar graph and the tree-width of its geometric dual are approximately equal -- indeed, we have convinced ourselves that they differ by at most one." They never gave a proof of this. In this paper, we prove that given a hypergraph H on a surface of Euler genus k, the tree-width of H is at most the maximum of tw(H) + 1 + k and the maximum size of a hyperedge of H minus one.
Frédéric Mazoit
Added 10 Dec 2010
Updated 10 Dec 2010
Type Journal
Year 2008
Where CORR
Authors Frédéric Mazoit
Comments (0)