We show how to combine trust management theories with nonce-based cryptographic protocols. The strand space framework for protocol analysis is extended by associating formulas from a trust management logic with the transmit and receive actions of the protocol principals. The formula on a transmission is a guarantee; the sender must ensure that this formula is true before sending the message. The formula on a receive event is an assumption that the recipient may rely on in deducing future guarantee formulas. The strand space framework allows us to prove that a protocol is sound, in the sense that when a principal relies on a formula, another principal has previously guaranteed it. We explain the ideas in reference to a simple new electronic commerce protocol, in which a customer obtains a money order from a bank to pay a merchant to ship some goods. Cryptographic protocol analysis has aimed primarily to determine what messages another principal must have sent or received, when one princ...
Joshua D. Guttman, F. Javier Thayer, Jay A. Carlso